Currents and Flat Chains Associated to Varifolds, with an Application to Mean Curvature Flow

نویسنده

  • BRIAN WHITE
چکیده

We prove under suitable hypotheses that convergence of integral varifolds implies convergence of associated mod 2 flat chains and subsequential convergence of associated integer-multiplicity rectifiable currents. The convergence results imply restrictions on the kinds of singularities that can occur in mean curvature flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Semicontinuity of the Willmore Functional for Currents

The weak mean curvature is lower semicontinuous under weak convergence of varifolds that is if μk → μ weakly as varifolds then ‖ ~ Hμ ‖Lp(μ)≤ lim infk→∞ ‖ ~ Hμk ‖Lp(μk) . In contrast, if Tk → T weakly as integral currents then μT may not have locally bounded first variation even if ‖ ~ HμTk ‖L∞(μk) is bounded. In 1999, Luigi Ambrosio asked the question whether lower semicontinuity of the weak m...

متن کامل

Kernel Metrics on Normal Cycles and Application to Curve Matching

In this work we introduce a new dissimilarity measure for shape registration using the notion of normal cycles, a concept from geometric measure theory which allows to generalize curvature for non smooth subsets of the euclidean space. Our construction is based on the definition of kernel metrics on the space of normal cycles which take explicit expressions in a discrete setting. This approach ...

متن کامل

Brian White - Mean Curvature Flow (math 258) Lecture Notes Notes by Otis Chodosh

1. Overview 2 1.1. Curve shortening flow 2 1.2. Flow of hypersurfaces 5 1.3. Mean convex surfaces 6 2. The maximum principle 7 3. Unparameterized mean curvature flow 8 3.1. Graphs 8 4. Short-time existence and smoothing 9 5. Long term behavior of mean curvature flow 9 6. Renormalized mean curvature flow 11 7. The level set approach to weak limits 13 8. Weak compactness of submanifolds 16 8.1. E...

متن کامل

Locality of the mean curvature of rectifiable varifolds

The aim of this paper is to investigate whether, given two rectifiable k-varifolds in R with locally bounded first variations and integer-valued multiplicities, their mean curvatures coincide H-almost everywhere on the intersection of the supports of their weight measures. This so-called locality property, which is well-known for classical C2 surfaces, is far from being obvious in the context o...

متن کامل

A Generalization of Rellich's Theorem and Regularity of Varifolds Minimizing Curvature a Generalization of Rellich's Theorem and Regularity of Varifolds Minimizing Curvature

We prove a generalization of Rellich's theorem for weakly diieren-tiable functions on curvature varifolds (see deenitions below) and apply it to prove regularity of minimizers of curvature integrals under certain assumptions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008